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Abstract. One-shot federated learning (FL) has emerged as a promis-
ing solution in scenarios where multiple communication rounds are not
practical. Notably, as feature distributions in medical data are less dis-
criminative than those of natural images, robust global model training
with FL is non-trivial and can lead to overfitting. To address this issue,
we propose a novel one-shot FL framework leveraging Image Synthe-
sis and Client model Adaptation (FedISCA) with knowledge distillation
(KD). To prevent overfitting, we generate diverse synthetic images rang-
ing from random noise to realistic images. This approach (i) alleviates
data privacy concerns and (ii) facilitates robust global model training us-
ing KD with decentralized client models. To mitigate domain disparity
in the early stages of synthesis, we design noise-adapted client models
where batch normalization statistics on random noise (synthetic images)
are updated to enhance KD. Lastly, the global model is trained with
both the original and noise-adapted client models via KD and synthetic
images. This process is repeated till global model convergence. Extensive
evaluation of this design on five small- and three large-scale medical im-
age classification datasets reveals superior accuracy over prior methods.
Code is available at https://github.com/myeongkyunkang/FedISCA.

Keywords: One-Shot Federated Learning · Knowledge Distillation ·
Noise · Image Synthesis · Client Model Adaptation.

1 Introduction

One-shot federated learning (FL) allows a global model to be trained through a
single communication round without sharing data between clients [8,15,35,6,33].
⋆ Corresponding author.
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Fig. 1. Feature visualization on natural (MNIST and Cifar10) and medical (Blood,
Derma, Oct, Path, and Tissue) images. For visualization, we placed a bottleneck layer
before the class prediction layer, reducing the feature dimension to 2. Each color rep-
resents a classification label. Notably, the feature distribution in medical data is more
complex.

This approach significantly reduces the risk of attack and communication costs
compared to FL [21] and allows for decentralized training under extreme condi-
tions. For instance, one-shot FL has emerged as a viable solution for reducing
significant transmission costs in scenarios where patient data is only accessible
within an isolated network requiring in-person transfer of client models. Since
one-shot FL can only access clients’ models once during training, recent one-shot
FL suggests generating images and using them to transfer knowledge from mul-
tiple client models for global model training using knowledge distillation (KD)
[33]. However, the lack of diversity in the generated images often leads to overfit-
ting, posing a significant challenge for one-shot FL. To address this issue, [33,22]
propose to enhance the transferability of client models by generating diverse
natural images near the decision boundary. Compared to natural images, the
decision boundaries in medical data are often more complex (e.g., less discrimi-
native as shown in Fig. 1), which limits the applicability of existing one-shot FL
approaches to this application. Note, while the challenges in medical data and
client heterogeneity can be mitigated through multiple communication rounds
[23,12,36,18], the one-shot scenario presents a unique difficulty. Through this
study, we reveal the inherent drawbacks of existing one-shot FL methods for
medical data (see Table 1), and suggest a more suitable approach to address
existing challenges e.g., overfitting.

To prevent global model overfitting, we attempt to leverage random noise as
a training source for KD (see Fig. 2). Baradad et al. [1] employs diverse types of
structured noise for training in order to account for the difference between real
images and random noise. However, due to the diversity of medical data [3,13,14],
seeking a common noise space is more challenging than in natural images. Hence,
we exploit DeepInversion [30], which synthesizes structured proxy noise specific
to a task and thus ensures that generated noise matches the properties of medical
data. Specifically, we first gather client models on the central server, where each
client model is trained on its own dataset. Next, we synthesize images from
random noise and store all intermediate samples in memory. Also, as images
in the early stages of synthesis (i.e., close to random noise) are different from
real images, we design noise-adapted client models that employ adaptive batch
normalization (AdaBN) [16]. AdaBN is based on the assumption that domain-
related knowledge is represented by the statistics of the batch normalization
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(BN) [11] and label-related knowledge is stored in the weight matrix of each
layer, ultimately enhancing the KD signal for random noise. Lastly, we train
a global model through KD with both the original- and noise-adapted client
models using memory-stored images, repeating until global model convergences.

The contributions are as follows: (i) We propose one-shot FL leveraging im-
age synthesis with client model adaptation. This allows to transfer knowledge
from client models to the global model with synthesized images ranging from
random noise to realistic images and contributes to preventing overfitting. (ii)
We employ noise-adapted client models using AdaBN to produce a better KD
signal for random noise. (iii) Comprehensive experiments on five small- and
three large-scale medical image classification datasets consisting of microscopy,
dermatoscopy, oct, histology, x-ray, and retinal images reveal that our method
outperforms state-of-the-art one-shot FL methods.
Related Work. Due to the challenges of one-shot FL, prior methods were
trained on public data [8,15], applying dataset distillation [35], or sharing ad-
ditional information [6]. However, these assumptions may not hold for several
real world scenarios, posing a challenge for their practical application. Recently,
Zhang et al. [33] proposed the one-shot FL DENSE, which transfers knowledge
from an ensemble of client models using KD and generated images. To enhance
the transferability of client models, DENSE generates diverse images near the
decision boundary to improve its accuracy. However, DENSE does not perform
well in one-shot FL for medical data due to the complexity of decision bound-
aries. While DENSE diversifies generation using a generator, we propose to avoid
overfitting by using synthesized images ranging from random noise to realistic
images. For data-free KD [19], DeepInversion [30] synthesizes images by op-
timizing RGB pixels with cross-entropy and regularization losses and improves
synthesis quality by minimizing feature statistics in BN layers. DAFL [2] uses a
generator for image synthesis with a teacher model as a discriminator. To prevent
student model overfitting, ZSKT [22] synthesizes images that exhibit mismatch
between the student and teacher models. Unlike the methods that choose the
best image as a training source for KD, our approach utilizes all intermediate
synthesized images to prevent overfitting. Also, while Raikward et al. [24] pro-
posed a method for KD that uses random noise as a training source, it requires
real images during training and needs to adjust BN layer statistics multiple times
iteratively. In contrast, our method performs one-shot FL without requiring real
images during training.

2 Method

The overall training processes are shown in Fig. 2 and Algorithm 1. Given K
client models W c = {W c

1 , . . . ,W
c
k} with corresponding BN statistics µk and

σ2
k with respect to data Dk, the objective of FL is to train a global model

W g, which represents all data D = {D1, . . . , Dk}. Motivated by [17,34,33], KD
enables the transfer of knowledge from client models W c to the global model
W g. Due to restricted access of D, prior works [33,2,30] use synthetic images x̂
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Fig. 2. Illustration of our proposed method. W c
k denotes a client model with respect

to data Dk and W g denotes a global model. W c denotes original client models and Ŵ c

denotes noise-adapted client models. x̂ indicates random noise and λ indicates noise
level. x̂ is optimized to have a property of all Dk using LCE , LBN , and LTV . Afterward,
it is used as a training source for KD in global model training.

as a training source for KD. However, since x̂ may be monotonous for robust
training, overfitting is a significant challenge in one-shot FL. To address this, we
employ random Gaussian noise N (0, 1) as a training source for KD [1]. However,
in contrast with [1], N (0, 1) does not capture common medical properties. Hence,
we employ DeepInversion [30] to ensure random noise retains characteristics of
D. Details regarding image synthesis with DeepInversion are described in the
following section.
Image Synthesis. Given random noise x̂ ∈ RH×W×C initialized from N (0, 1),
where H, W , and C denote height, width, and channels; the objective of image
synthesis is to ensure x̂ possesses a certain property of D. To achieve this, we
optimize RGB pixels of x̂ to synthesize a class-conditioned image with respect
to a specific label y for I iterations. Formally,

Ls(x̂, y;W
c) = LCE(x̂, y;W

c) + λBNLBN (x̂;W c) + λTV LTV (x̂;W
c), (1)

where LCE , LBN , and LTV are cross-entropy, BN, and total variation losses [20].
Hyper-parameters λBN and λTV are used to balance the losses. Cross-entropy
loss enables the synthesis of an image with respect to the label y, and total
variation loss encourages image synthesis consistency. Additionally, LBN (x̂) =∑

(∥µ(x̂)− µ∥+ ∥σ2(x̂)− σ2∥), where µ(x̂) & σ2(x̂) are the batch-wise mean &
variance features of x̂ and µ & σ2 of the stored statistics of the BN layer. Since
BN enforces feature similarity at all levels, this improves the quality of image
synthesis significantly.

Recall that our method employs random noise x̂ that has D’s characteristics
for training. In contrast to DeepInversion which selects the best image as a
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Algorithm 1 Training process of our proposed method.
Input: Client models W c with corresponding µ and σ2, a global model W g , a iteration I, a learning
rate of image synthesis ηs, a learning rate of KD ηd, a momentum α.
Ŵ c ← W c, µ̂← µ, σ̂2 ← σ2 // Initialize noise-adapted client models
Repeat

Initialize a batch of random noise x̂ and arbitrary labels y.
memory ← [ ]
for i = 1, · · · , I do

x̂← x̂− ηs∇Ls(x̂, y;W
c) // Synthesize image

memory.append((x̂, 1− i/I))
end for
for i = 1, · · · , I do

x̂, λ← memory[I − i]

µ̂← αµ̂ + (1− α)µ(x̂), σ̂2 ← ασ̂2 + (1− α)σ2(x̂) // Adapt noise for Ŵ c

end for
for i = 1, · · · , I do

x̂, λ← memory[i]

W g ← W g − ηd∇Ld(x̂, λ;W
c, Ŵ c,W g) // Train global model

end for
until convergence.
Output: Trained global model W g .

training source, our method employs all intermediate synthesized samples for
KD. Thus we store all intermediate samples and the corresponding noise level
λ (e.g., 1 − i/I for i steps) in memory during I iterations. Due to the visual
difference between N (0, 1) and D, we design noise-adapted client models using
AdaBN [16] to provide better KD signals for x̂. The following section will describe
more details regarding noise-adapted client models.
Noise Adaptation. BN [11] was proposed to mitigate internal covariate shifts,
allowing to provide consistent input distributions to subsequent layers. Due to
the existing discrepancy between N (0, 1) and D, there is no guarantee BN will
provide consistent input to subsequent parameters and may lead to poor model
predictions. Thus we adapt N (0, 1) by iteratively adjusting the running statistics
of BN using AdaBN [16], producing better logit signals for KD. Formally,

µ̂ = αµ̂+ (1− α)µ(x̂), σ̂2 = ασ̂2 + (1− α)σ2(x̂), (2)

where α represents momentum and x̂ is a sample stored in memory. Initially, µ̂
and σ̂2 are set to µ and σ2. The samples in memory ranging from characteristic
images for D to N (0, 1) by gradually adjusting µ̂ and σ̂2 towards N (0, 1) through
Eq. 2 for I steps. With this in mind, we now describe how to train the global
model.
Global Model Training. KD allows to train a global model with multiple
client models [33,17,34]. We denote W c with original µ and σ2 as W c, and
denote W c with µ̂ and σ̂2 as Ŵ c. Since x̂, W c, and Ŵ c are used for KD, this
enables the model to avoid overfitting without being negatively impacted during
global model training. Formally,

Ld(x̂, λ;W
c, Ŵ c,W g) = λLKD(x̂; Ŵ c,W g) + (1− λ)LKD(x̂;W c,W g), (3)

where λ denotes a noise level stored in memory. LKD(x̂;W c,W g) denotes the
Kullback-Leibler divergence between p(x̂;W c) and p(x̂;W g) where p(·) is an
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ensemble (averaging) prediction of given models with a temperature on soft-
max inputs [10]. Overall, W g is trained for I steps. To clarify, random noise
contributes to avoiding overfitting, while noise-adapted client models help to
produce a better KD signal for random noise, improving robust global model
training. These processes i.e., Image Synthesis, Noise Adaptation, and Global
Model Training are repeated until the global model W g converges.

3 Experiments

Datasets. For evaluation, we use five small-scale (28×28) medical image clas-
sification datasets i.e., Blood, Derma, Oct, Path, and Tissue from MedMNIST
[29]. Additionally, we use three large-scale (224×224) datasets i.e., RSNA, Di-
abetic, and ISIC from RSNA Pneumonia Detection [25], Diabetic Retinopathy
Detection [7], and ISIC2019-HAM-BCN20000 [4,28,5].
Experimental Settings. We explore three scenarios i.e., (i) data heterogeneity
levels, (ii) impact on large-scale datasets, and (iii) model heterogeneity i.e., each
client has different architectures. In (i), Blood, Derma, Oct, Path, and Tissue
datasets are used with Independent and Identically Distributed (IID) clients
and Dirichlet distributed [31] clients with α = 0.6 and α = 0.3. For (ii), RSNA,
Diabetic, and ISIC datasets are used with IID clients, including ISIC′ where
each client has a different image acquisition system [27]. For (iii), client models
used either ResNet18 [9], ResNet34 [9], WRN-16-2 [32], VGG16(with BN) [26],
and VGG8(with BN) [26], respectively.

Comparison Methods. We employ three one-shot FL methods: FedAvg [21]
with single communication, DAFL [2], and DENSE [33], each evaluated using
global model accuracy obtained on test data. For the upper bound, we report
the FedAvg with 100 communications. For ablations, we evaluate (a) without
image synthesis (w/o IS), (b) without image synthesis and noise adaptation (w/o
IS&Ada) with only N (0, 1) used for training, (c) without noise adaptation (w/o
Ada), and (d) without intermediate random noise (w/o N ), this is equivalent
to DeepInversion [30] in a one-shot FL scenario. For w/o N , we synthesize all
images and perform KD. For a fair comparison, we follow each method’s original
implementation and matched all training/parameter settings. For DAFL, an
ensemble of client models was used as the teacher model following [33,17,34]
with KD used for global model training. On large-scale datasets, an ImageNet
pre-trained model was used with balanced classification accuracy reported for
evaluation as in [27].

Implementation Details. We used ResNet18 [9] for our experiments with five
clients by default. Client models were trained for 100 epochs with SGD opti-
mizer using learning rate (LR) 1e-3 and batch size 128. For image synthesis, we
used Adam optimizer with LR 5e-2 for 100 epochs with 500 and 1,000 synthe-
sis iterations (i.e., I) for small- and large-scale datasets, with batch sizes 256
and 50, respectively. Following [30], λTV = 0.000025 and λBN = 10, with KD
temperature T = 20 and momentum α = 0.9.
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Table 1. Classification accuracy on five datasets with different heterogeneity levels.
The first and second sub-rows show the accuracy of the upper bound and one-shot FL
methods. The third sub-row shows ablation performance with IS, Ada, and N denoting
w/o image synthesis, noise adaptation, and random noise, respectively. Bold indicates
the best accuracy among one-shot FL methods.

IID Dirichlet (α = 0.6) Dirichlet (α = 0.3)
Blood Derma Oct Path Tissue Blood Derma Oct Path Tissue Blood Derma Oct Path Tissue

FedAvg[21] 93.51 74.61 75.60 84.54 63.64 93.60 72.72 76.50 81.48 55.61 87.49 69.88 73.50 77.52 53.26

FedAvg(1) 13.74 66.88 25.00 5.86 32.07 18.24 66.88 25.00 5.86 32.07 16.92 10.97 25.00 5.86 32.07
DAFL[2] 7.13 66.43 25.00 7.63 11.55 7.13 66.88 34.40 14.97 39.15 7.13 13.62 25.00 18.64 45.00
DENSE[33] 39.37 66.93 33.80 21.89 21.35 34.52 67.78 39.40 30.31 9.47 30.78 12.77 25.80 19.87 9.33
FedISCA 87.99 70.12 70.20 84.18 61.90 82.90 69.83 68.60 82.92 53.04 46.59 15.91 60.50 79.25 51.00
w/o IS 9.09 66.88 25.20 24.69 23.70 9.09 66.88 26.10 22.41 9.31 23.27 11.02 27.10 18.70 9.31
w/o IS&Ada 7.13 11.12 35.80 4.72 7.13 7.13 66.88 25.00 14.15 32.07 7.13 11.12 25.00 4.72 7.13
w/o Ada 81.61 68.33 70.30 82.08 59.34 63.67 68.18 61.90 78.61 51.99 29.73 14.36 54.30 77.69 50.40
w/o N [30] 87.02 68.73 60.20 77.90 57.86 80.62 69.58 60.30 75.54 49.06 45.69 13.87 49.20 70.53 46.73

Table 2. Balanced classification accuracy on large-scale datasets.

FedAvg[21] FedAvg(1) DAFL[2] DENSE[33] FedISCA w/o IS w/o IS&Ada w/o Ada w/o N [30]

RSNA 88.16 78.65 50.55 55.06 85.34 50.00 50.00 81.56 50.61
Diabetic 49.04 35.60 22.63 23.51 40.08 20.07 20.02 40.91 28.30
ISIC 62.88 38.05 14.51 13.69 48.39 12.50 12.50 47.21 25.61
ISIC′ 57.15 18.08 18.37 16.46 22.47 11.29 12.52 21.72 14.80

3.1 Main Results

Table 1 shows the accuracy on five datasets with different heterogeneity levels.
FedISCA outperforms all one-shot FL methods across all datasets regardless of
the level of heterogeneity. In Table 2, FedISCA also reports improved perfor-
mance against the compared methods, validating the viability of our approach
on real-world large-scale data. On the contrary, DAFL and DENSE performed
poorly on medical data since significant accuracy gaps exist between the upper
bound and each competitor (except Derma). Additionally, though FedAvg re-
ports higher accuracy for multiple communication rounds, it shows significantly
lower accuracy for single communication (FedAvg(1)). To better explain this
phenomenon, we analyzed the accuracy of FedAvg(1) by comparing the variance
between client model parameters i.e., client models with high variance e.g., Path
IID(=36.10), yield lower accuracy compared to those with low variance e.g.,
Derma IID(=0.01). This suggests that the variance of client models is correlated
with the accuracy of FedAvg(1).

In Fig. 3, we show the synthesized images of FedISCA, DAFL [2], and DENSE
[33] on eight datasets. FedISCA generates more realistic images compared to the
competitors. Note that DENSE aims to generate a diverse image (e.g., generat-
ing highly transferable samples) distributed near the decision boundary, which
may not be realistic. Although these methods have achieved higher accuracy
on natural data, our experiments reveal that this assumption does not hold in
the medical domain. In addition, DENSE outperforms FedAvg(1) on small-scale
datasets (except Tissue), but its accuracy is lower than FedAvg(1) on large-scale
datasets. This suggests a difficulty in large-scale image generation i.e., the gen-
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Fig. 3. The synthesized images of (a) FedISCA, (b) DAFL [2], and (c) DENSE [33] on
eight datasets. Overall, FedISCA synthesizes more realistic images.

Table 3. Classification accuracy on five datasets with model heterogeneity.

IID Dirichlet (α = 0.6) Dirichlet (α = 0.3)
Blood Derma Oct Path Tissue Blood Derma Oct Path Tissue Blood Derma Oct Path Tissue

DAFL[2] 7.13 65.69 25.00 15.72 35.66 7.13 67.23 37.10 28.15 39.54 7.13 13.47 45.30 29.68 19.54
DENSE[33] 46.86 66.88 44.00 33.08 38.28 23.47 67.93 40.70 28.68 36.70 34.67 13.42 44.00 39.37 38.37
FedISCA 87.96 71.17 70.00 83.02 61.74 73.43 69.23 64.80 82.73 51.95 44.20 16.61 62.00 72.26 43.80
w/o N [30] 87.55 69.93 51.20 74.05 57.90 68.78 68.93 61.00 72.79 46.91 43.85 15.61 51.50 64.65 39.89

erator in DENSE deteriorates global model training and leads to lower accuracy,
while FedAvg(1) achieves high accuracy due to the low client model variance
e.g., RSNA(=0.61), Diabetic(=0.04), and ISIC(=0.09).
Ablations. We report ablation results in Table 1 and 2. In the medical field,
generating realistic images is crucial for one-shot FL, as the accuracy of w/o
IS, and w/o IS&Ada is significantly lower compared to FedISCA; this validates
the need for image synthesis. However, relying on image synthesis alone is not
enough to achieve high accuracy, as neither w/o Ada nor w/o N achieve the
best accuracy across all datasets. w/o N performs worse than w/o Ada in most
datasets (except Blood and Derma), showing that solely relying on the best
image is not sufficient for robust training. On the contrary, the accuracy of
FedISCA suggests that noise-adapted client models alleviate the negative effects
of random noise, resulting in high accuracy. Overall, the experimental results
support the idea that both components play an essential role in medical one-
shot FL. Additionally, we also evaluate the variance in BN statistics between
the original and noise-adapted client models. Here, we found that high vari-
ance (e.g., RSNA(=0.0018)), yields improved accuracy compared to those with
lower variance (e.g., Diabetic(=0.0008)). Finally, Table 3 shows the accuracy of
a global model trained on client models with model heterogeneity. The proposed
method reports the best accuracy among all competitors, equally demonstrat-
ing the effectiveness of our method in one-shot FL with diverse types of model
architectures.

4 Conclusion

We present a novel one-shot FL framework that uses image synthesis and client
model adaptation with KD. We demonstrate that (i) random noise significantly
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reduces the risk of overfitting, resulting in robust global model training; (ii) noise-
adapted client models enhance the KD signal leading to high accuracy; and (iii)
through experiments on eight datasets, our method outperforms the state-of-
the-art one-shot FL methods on medical data. Further investigation into severe
heterogeneity in clients will be a topic of future research.
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